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1. Introduction
Basics of glottal inverse filtering (GIF)

(a) Production of (voiced) speech is modelled by three processes:

(1) Glottal flow: excitation

(2) Vocal tract: prominent physiological filter with resonances (i.e. formants)

(3) Lip radiation: conversion of flow in mouth into pressure in free field
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1. Glottal excitation

2. Vocal tract

3. Lip radiation

Speech

Fig. 1. Production of speech.
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(b) Filtering processes (vocal tract, lip radiation) are estimated and represented typically by digital

filters. Lip radiation is modelled by a fixed high-pass filter, whereas modelling of the vocal tract is

more challenging and calls for adaptive methods.

(c) Glottal excitation is estimated by cancelling the effects of the vocal tract and lip radiation by filtering

speech through the inverses of the filters.

1. Glottal excitation

2. Vocal tract

3. Lip radiation

Speech

GIF

Estimated glottal flowFig. 2. Glottal inverse filtering: the principle.
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• In the current talk, we will focus on the inverse filtering scenario shown in Fig. 2 that is based on

using as input the speech pressure signal recorded outside the mouth.

• Inverse filtering can also be computed using the oral flow input recoded with a mask (Rothenberg,

1973) and this approach has been used in many studies (e.g. Sundberg, 2017; Sundberg et al.,

2005).

• The use of free-field input enables applying inverse filtering in biomarking state of health from

speech recordings conducted in real-life situations (e.g. from spontaneous conversations).
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Benefits of inverse filtering

• Provides a non-invasive method to estimate the origin of voiced speech.

• Reveals valuable information about the generation of several essential acoustical cues (e.g. F0,
phonation type) that are used in speech communication. Differently from other techniques
such as electroglottography this information corresponds to real acoustical phenomenon (air
flow) that takes place when speech is produced.

• Can be used in technical applications such as in automatic classification of disorders and in
speech synthesis.

Drawbacks of inverse filtering

• Estimation accuracy sometimes not satisfactory (e.g., for high-pitched speech).

• Some GIF methods need user adjustments => Estimation results might be biased by the user.

• Calls for high-quality recording equipment.

• Many GIF methods are based on linear source-tract models => Non-linear phenomena in speech
production (e.g. interaction between source and tract) cannot be modelled.
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Voice source analysis is typically conducted in two stages

(1) The inverse filtering stage

- Input: pressure signal recorded by microphone

- Output: time-domain waveform of the estimated glottal excitation

(2) The parameterization stage

- Input: time-domain waveform of the estimated glottal excitation

- Output: numerical value(s) that captures the most essential information 

embedded in the glottal excitation waveform
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2. Glottal inverse filtering methods

• The idea of GIF was proposed in Miller (1959).

Fig. 3. Schematic of the experimental GIF setup used in Miller (1959).
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• Other early experiments using analog techniques (e.g. Fant 1961; Lindqvist-Gauffin 1965; 

Rothenberg, 1973)

• First GIF experiments based on digital signal processing were conducted by Oppenheim and 

Schafer (1968) and Nakatsui and Suzuki (1970).

• Many GIF methods have been proposed in the past four decades, examples:

- Closed phase analysis (Strube, 1974; Wong et al., 1979) 

- Iterative adaptive inverse filtering (IAIF) (Alku, 1992)

- Simultaneous inverse filtering and model matching (Fröhlich et al., 2001)

- Zeros of z-transform (Bozkurt et al., 2005)

- Autoregressive model with an exogenous input (Fu and Murphy, 2006)

- Complex cepstrum based decomposition (Drugman et al., 2011)

- Quasi-closed phase analysis (Airaksinen et al., 2014)

- State-space modelling optimized by Kalman filtering (Sahoo and Routray, 2016; Cortes et al., 2022) or the 

expectation-maximization algorithm (Alzamendi and Schlotthauer, 2017)

- Quadratic programming (Airaksinen, Bäckström and Alku, 2017)

- Modified IAIF (Mokhtari et al., 2018)

- Deep neural network –based analysis (Narendra et al., 2019; Langheinrich et al., 2022)
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3. Glottal parameters

• Glottal inverse filtering maps a time-domain speech waveform to a time-domain glottal flow estimate.

=>

The estimated time-domain waveform is expressed using glottal parameters (i.e. numerical values)
that aim to capture the most essential information embedded in the glottal excitation waveform.

• Glottal parameters are used both in fundamental research of voice production and also in machine
learning –based classification studies (as will be described in Section 5).

• Many glottal parameters have been developed both using time-domain and frequency-domain
approaches.

Examples of time-domain glottal parameters: (1) based on extracting critical time instants: open
quotient, speed quotient (Timcke et al., 1958), closing quotient (Monsen and Engebretson, 1977),
normalized amplitude quotient (Alku et al., 2002), (2) based on matching the estimated flow (or its
derivative) with artificial waveforms (e.g. the Liljencrants-Fant model) (Strik and Boves, 1992).

Examples of frequency-domain glottal parameters: H1-H2 (Titze and Sundberg, 1992); harmonic
richness factor (Childers and Lee, 1991), parabolic spectral parameter (Alku et al., 1997)
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Fig. 4. Glottal flow pulse (upper panel) and its derivative (lower panel). 

An example of a time-domain glottal parameter (closing quotient):   ClQ = Tcl / (Tc + To + Tcl)
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Fig. 5. Time-domain glottal flow pulseform in breathy

phonation (upper panel) and in pressed phonation (lower

panel).

Fig. 6. Glottal flow spectrum in breathy phonation (upper

panel) and in pressed phonation (lower panel).

An example of a frequency-domain glottal parameter (level difference at F0 and 2F0): H1-H2
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4. Automatic machine learning -based biomarking of health from 
speech 

• Speech is produced by the human speech production mechanism and therefore it contain acoustical 
cues of the speaker’s state of health.

• Signal processing and machine learning (ML) can be used to automatically biomark state of health 
from speech. In this talk, the technology is called “Speech-based biomarking of health”:

Fig. 7. Organs affecting acoustical cues embedded in speech



Typical machine learning tasks studied

• The binary classification problem: detection of speakers with, for example, spasmodic 

dysphonia from healthy controls

• The multiclass classification problem: classification of speakers with different diseases (e.g.

healthy vs. hyperfunctional dysphonia vs. vocal fold paresis) or classification of speakers with

different levels of disease severity (e.g. healthy vs. mild dysarthria vs. severe dysarthria)

This presentation focuses on the binary classification problem. (1) Two technologies (the classical

pipeline approach, the end-to-end approach) are first generally described in this section. (2) Section

5 presents two examples of studies where automatic ML-based detection of diseases has been

investigated using inverse filtering.
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4.1 The classical pipeline approach

• Two separate parts: feature extraction and classifier

• Speech microphone signals are expressed in a compressed form using features such as mel-

frequency cepstral coefficients (MFCCs) (Davis and Mermelstein, 1980).

• A machine learning (ML) classifier (e.g. support vector machine, SVM, Cortes and Vapnik, 1995) 

is trained to distinguish, for example, speech produced in disease “X” from speech produced by 

healthy speakers.

15
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Fig. 8. A general structure of a detection system based on the traditional pipeline approach. Speech database includes

labelled speech signals (disease “X” vs. healthy). Classifier can be, for example, SVM.



• Test samples are mapped into that same space and predicted to belong to a category based on which 

side of the gap they fall.

• Because the two classes in the original, low-dimensional feature space are not necessarily linearly 

separable, SVM implicitly maps the data to a higher-dimensional space using a kernel function.
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Fig. 9. Training data in two classes

(back circles: disease “X”; white

circles: healthy) in a 2-dimensional

speech feature space. SVM

defines H3, which separates the

classes with the maximal margin.

The support vector machine (SVM) classifier
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4.2 The end-to-end approach

• Detection is computed directly from the time-domain input speech waveform (or from spectrogram) using 

deep learning networks (typically convolutional neural nets, CNNs).

• No separate feature extraction and classification stages: they are replaced with a single network structure.

Fig. 10. An example of a CNN-based deep learning classification system (binary detection between “healthy” and

“pathological” voice) (modified from Kaushik et al., 2021).



5. Machine learning studies in automatic classification of 

diseases using glottal inverse filtering 

• Automatic ML-based classification of diseases from speech has been widely studied in recent 

years. 

• Most studies use existing feature sets, such as openSMILE (Eyben et al., 2010), that are 

extracted from speech pressure signals.

• Glottal features have been used in some studies, for example: 

- Classification of nodules in children (Szklanny and Wrzeciono, 2019)

- Pathology classification (Wu et al., 2021; Gomez-Vilda et al., 2009; Kadiri and Alku, 2020; Tirronen et al., 
2023)

- Detection of Parkinson’s disease (Novotny et al., 2020; Vasquez-Correa et al., 2021; Narendra et al., 2021; 
Liu et al., 2023; 

- Detection of Covid-19 (Deshmukh et al., 2021)

- Detection of depression (Ooi et al., 2012; Simantiraki et al., 2017)

• Let us study next two of our investigations where glottal features have been used in automatic 

ML-based detection of diseases from speech. 
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5.1 Reddy, Helkkula, Keerthana, Kaitue, Minkkinen, Tolppanen, Nieminen, Alku. The automatic 

detection of heart failure using speech signals. Comp. Speech Lang. 69, article no. 101205, 2021.

• Binary detection: heart failure (HF) vs. healthy

• Speech data (Finnish): 20 patients, 25 healthy controls (recorded by the team at Helsinki 

University Central Hospital)

• System architecture: a classical pipeline system (with different classifiers and features)

• Study goal: can the detection of HF be improved by using glottal features?
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Fig. 11. Speech signal (a) and the estimated glottal flow (b) of a healthy speaker. Speech signal (c) and 

the estimated glottal flow (d) of an HF patient.
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Glottal flow (healthy speaker)

Glottal flow (HF patient)



Fig. 12. The classical pipeline method utilized to detect HF from speech. 
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Table 1. Detection accuracy (in %) for four different classifiers with different feature sets. MFS: the mel-frequency 

cepstral coefficient set, GFS: the glottal feature set. The length of the feature vector is given in parenthesis. 
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Baseline: MFCC features and SVM classifier

The best system: combined glottal and MFCC 

features and neural net classifier



5.2 Narendra, Alku: Glottal source information for pathological voice detection. IEEE Access 8(1): 

67745–67755, 2020.

• Binary detection experiments: dysarthric vs. healthy (the UA-Speech database and the TORGO 

database) and dysphonic vs. healthy voices (the UPM database). 

• Note: dysarthria in this article is due to ALS and CP. For our similar studies on Parkinson’s 

disease, see Liu et al., 2023 & Narendra, Schuller and Alku, 2021.

• Study goal: to investigate the use of the estimated glottal flow in detection of pathological voice by 

comparing the classical pipeline approach to the end-to-end approach.

• System architectures: 

 - a classical pipeline system (with the SVM classifiers and different features)

 - an end-to-end system (using either the raw voice signal or the estimated glottal flow)

24
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Fig. 13. The classical pipeline system (training stage). 

Fig. 14. The classical pipeline system (test stage). 
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Table 2. Classification results obtained using the classical pipeline systems with the openSMILE and glottal 

features for the three pathological voice databases

Reading instructions:

 - openSMILE-1 and openSMILE-2: widely used acoustic feature sets (no inverse filtering)

 - Glottal-1 and Glottal-2: glottal feature sets (based on inverse filtering)

 - UA-Speech, TORGO, UPM: databases of pathological speech

 - accuracy, sensitivity, specificity: widely used metrics (optimal value: 100%) 

 



6. Summary and conclusions

• Glottal inverse filtering (GIF) enables non-invasive estimation of the voice source from microphone 

speech signals.

• Many GIF methods and glottal parameters have been developed during past decades, and new 

GIF methods have been proposed recently. 

• The QCP method (Airaksinen et al., 2017) is available as MATLAB code and as implementation in 

the Aalto Aparat GIF tool (Alku et al., 2017).

• GIF has been used in fundamental research, but the topic was handled in the current presentation 

mainly from the point of view speech-based biomarking of health that uses machine learning (ML) 

classifiers.

• GIF can be used with ML in biomarking of health both in (1) classical pipeline classifiers (in feature 

extraction) and (2) in end-to-end classifiers (as an alternative input to the speech signal).
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• Adding glottal features to widely used speech features (e.g. MFCCs, openSMILE) has been

shown to improve detection accuracy in several recent biomarking studies.

=> Glottal features per se are not necessarily best features for biomarking but they include

complementary information about phonation that has been shown to improve existing speech

features.

• In speech-based biomarking of health, deep learning –based end-to-end approaches are popular

today. Therefore, the computation of glottal (and other) features might sound less attractive.

However, the following issues justify the use of glottal features.

(1) Glottal features provide better explainability compared to deep learning –based end-to-end

systems (“black boxes”).

(2) Since voice source information is embedded in the speech signal, this information should be

able to be extracted by non-linear end-to-end networks without using GIF. However, end-to-end

networks are data hungry and they cannot necessarily be trained properly in the area of

pathological voice, where little training data is typically available.
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Fig. 15. An example demonstrating dysarthric speech of two severity levels. The speech signals are expressed in a 

2-dim space spanned by two glottal parameters for low disease severity (filled circles) and for high disease severity 

( ‘+’ marks). (Narendra and Alku, 2020). Both parameters were z-score normalized (mean=0; std=1).

Glottal parameters used:

NAQ (normalized amplitude quotient, Alku et al., 2002): a measure of 

relative glottal closing phase length. Large value: breathy phonation, small 

value:  pressed phonation.

PSP (parabolic spectral parameter, Alku et al., 1997): a measure of spectral 

tilt. Large value: small tilt, small value: large tilt.



• Out latest biomarking studies have addressed other than GIF-related topics such as exemplar-

based sparse representations in detection of Parkinson’s disease (Reddy and Alku, 2023), wavelet 

scattering features (e.g. Keerthana et al., 2024) and pre-trained models (e.g. Tirronen, Kadiri and 

Alku, 2023; Javanmardi, Kadiri and Alku, 2024).
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